1,964 research outputs found

    Spatiotemporal Expression of Pregnancy-Specific Glycoprotein Gene rnCGMl in Rat Placenta

    Get PDF
    As a basis towards a better understanding of the role of the pregnancy-specific glycoprotein (PSG) family in the maintenance of pregnancy, detailed investigations are described on the expression of a recently identified rat PSG gene (rnCGM1) at the mRNA and protein levels. Using specific oligonucleotide primers, rnCGM1 transcripts were identified after reverse transcription, polymerase chain reaction, and hybridization with a radiolabelled, internal oligonucleotide. Transcripts were only found in significant amounts in placenta. In situ hybridization visualized rnCGM1 transcripts at day 14 post coitum (p.c.), in secondary trophoblast giant cells and in the spongiotrophoblast. Only those secondary giant cells lining the maternal decidua were positive. In contrast, primary giant cells did not contain rnCGM1 mRNA. At day 18 p.c., rnCGM1. transcripts were almost exclusively detectable in the spongiotrophoblast. No rnCGM1 transcripts were found in rat embryos of these two developmental stages. Rabbit antisera were generated against the amino-terminal immunoglobulin variable-like domain and against a synthetic peptide containing the last 13 carboxy-terminal amino acids of rnCGM1. Bothe antisera recognized a 124 kDa protein in day 18 rat placental extracts as identified by Western blot analysis. The anti-peptide antiserum recognized a 116 kDa protein in the serum of a 14 day p.c. pregnant rat that is absent from the sera of non-pregnant females. Taken together, these results confirm exclusive expression of rnCGM1 in the rat trophoblast, but unlike human PSG, negligible or no expression is found in other organs, such as fetal liver or salivary glands, indicating a more specialized function of rnCGM1. Its spatiotemporal expression pattern is conducive with a potential role of PSG in protecting the fetus against the maternal immune system and/or in regulating the invasive growth of trophoblast cells

    Damage-cluster distributions and size effect on strength in compressive failure

    Get PDF
    We investigate compressive failure of heterogeneous materials on the basis of a continuous progressive damage model. The model explicitely accounts for tensile and shear local damage and reproduces the main features of compressive failure of brittle materials like rocks or ice. We show that the size distribution of damage-clusters, as well as the evolution of an order parameter, the size of the largest damage-cluster, argue for a critical interpretation of fracture. The compressive failure strength follows a normal distribution with a very small size effect on the mean strength, in good agreement with experiments

    The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins

    Get PDF
    The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3â€Č–5â€Č exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20−/− mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20−/− mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle

    disaggregation: An R Package for Bayesian Spatial Disaggregation Modeling

    Get PDF
    Disaggregation modeling, or downscaling, has become an important discipline in epidemiology. Surveillance data, aggregated over large regions, is becoming more common, leading to an increasing demand for modeling frameworks that can deal with this data to understand spatial patterns. Disaggregation regression models use response data aggregated over large heterogeneous regions to make predictions at fine-scale over the region by using fine-scale covariates to inform the heterogeneity. This paper presents the R package disaggregation, which provides functionality to streamline the process of running a disaggregation model for fine-scale predictions

    Designing optimal greenhouse gas observing networks that consider performance and cost

    Get PDF
    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH<sub>2</sub>FCF<sub>3</sub>, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks

    Conservation of Glomerular Organization in the Main Olfactory Bulb of Anuran Larvae

    Get PDF
    The glomerular array in the olfactory bulb of many vertebrates is segregated into molecularly and anatomically distinct clusters linked to different olfactory functions. In anurans, glomerular clustering is so far only described in Xenopus laevis. We traced olfactory projections to the bulb in tadpoles belonging to six distantly related anuran species in four families (Pipidae, Hylidae, Bufonidae, Dendrobatidae) and found that glomerular clustering is remarkably conserved. The general bauplan consists of four unequally sized glomerular clusters with minor inter-species variation. During metamorphosis, the olfactory system undergoes extensive remodeling. Tracings in metamorphotic and juvenile Dendrobates tinctorius and Xenopus tropicalis suggest a higher degree of variation in the glomerular organization after metamorphosis is complete. Our study highlights, that the anatomical organization of glomeruli in the main olfactory bulb (MOB) is highly conserved, despite an extensive ecomorphological diversification among anuran tadpoles, which suggests underlying developmental constraints.Fil: Weiss, Lukas. Justus Liebig Universitat Giessen; AlemaniaFil: Jungblut, Lucas David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Pozzi, Andrea Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: OŽConnell, Lauren A.. University of Stanford; Estados UnidosFil: Hassenklöver, Thomas. Justus Liebig Universitat Giessen; AlemaniaFil: Manzini, Ivan. Justus Liebig Universitat Giessen; Alemani

    Effects of increasing the affinity of CarD for RNA polymerase on Mycobacterium tuberculosis growth, rRNA transcription, and virulence

    Get PDF
    CarD is an essential RNA polymerase (RNAP) interacting protein in Mycobacterium tuberculosis that stimulates formation of RNAP-promoter open complexes. CarD plays a complex role in M. tuberculosis growth and virulence that is not fully understood. Therefore, to gain further insight into the role of CarD in M. tuberculosis growth and virulence, we determined the effect of increasing the affinity of CarD for RNAP. Using site-directed mutagenesis guided by crystal structures of CarD bound to RNAP, we identified amino acid substitutions that increase the affinity of CarD for RNAP. Using these substitutions, we show that increasing the affinity of CarD for RNAP increases the stability of the CarD protein in M. tuberculosis. In addition, we show that increasing the affinity of CarD for RNAP increases the growth rate in M. tuberculosis without affecting 16S rRNA levels. We further show that increasing the affinity of CarD for RNAP reduces M. tuberculosis virulence in a mouse model of infection despite the improved growth rate in vitro. Our findings suggest that the CarD-RNAP interaction protects CarD from proteolytic degradation in M. tuberculosis, establish that growth rate and rRNA levels can be uncoupled in M. tuberculosis and demonstrate that the strength of the CarD-RNAP interaction has been finely tuned to optimize virulence. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a major global health problem. In order to develop new strategies to battle this pathogen, we must gain a better understanding of the molecular processes involved in its survival and pathogenesis. We have previously identified CarD as an essential transcriptional regulator in mycobacteria. In this study, we detail the effects of increasing the affinity of CarD for RNAP on transcriptional regulation, CarD protein stability, and virulence. These studies expand our understanding of the global transcription regulator CarD, provide insight into how CarD activity is regulated, and broaden our understanding of prokaryotic transcription
    • 

    corecore